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Abstract

This paper develops an end-to-end rain now-casting model leveraging on a network
of 51 rain sensors in Singapore. We first provide a statistical analysis of temporal and
spatial distribution of rainfall events on the island. That investigation later guides
our research into LSTM based encoder-decoder models for short-term precipitation
forecasting. We first review current state-of-the-art approaches based on 2-D radar
maps of clouds and then apply those findings to the specific domain of weather sta-
tions. We propose and evaluate four different neural network architectures, of which
the two most important leverage graph convolutions to extract spatial relations be-
tween sensors. We then offer a comparative comparison of our approach with the
radar map based one and conclude that one-dimensional rainfall data coming from
rain sensors are lacking information for our models and cannot be considered useful
in the real life. However, we also point out that obtaining datasets with more envi-
ronmental features (such as solar radiation, temperature) will likely lead to better
performance of graph-based memory models and suggest future research directions
in that area.
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Chapter 1

Introduction

Water’s growing significance for the world was recognised by the United Nations in
2010 when the organization’s General Assemble declared ”Human Right to Water
and Sanitation” to be one of human rights [1]. UN Secretary Ban Ki-Moon stated
that safe drinking water and adequate sanitation are crucial for poverty reduction,
crucial for sustainable development, and crucial for achieving any and every one of
the Millennium Development Goals [2]. What is more, water is also important for
other humanitarian reasons such as sustainable precision farming [3], flood warning
systems [4], or sewage management. As fresh water reservoirs are not always readily
available across the world and the existing ones become increasingly more polluted,
rainfall prediction has become a crucial way of alleviating global warming effects
and providing drinking water for the people.
In this project, we are interested in predicting future precipitation amount over the
area of Singapore based on measurements of a network of environmental sensors
(capturing rainfall amount, temperature, wind-speed etc.) distributed quite evenly
across the country - but not regular-grid fashion (see 3.1). Our models forecasts
could be applied at some test real estates over the island which would be further
used as variable in another algorithm for managing drainage and run-off in the
estate. If accurate, such model will enhance utilisation of recycled rainfall water
likely leading to reduced costs as well as higher sustainability of estates. This is a
challenging problem because rain in Singapore is a highly variable phenomena with
a short (less than 1hour) average duration of a rainfall event.
Predicting rainfall intensity at a high spatial resolution over a short period of time
(2-6 hours) is called precipitation now-casting and modelling perspective it can be
regarded as spatio-temporal sequence generation. We adopt the same formulae as
[5] and define sequence forecasting problem as predicting the most likely length-K
sequence in the future given the previous J observations which include the current
one:

X̃t+1, . . . , X̃t+K = arg maxXt+1,...,Xt+K p(Xt+1, . . . ,Xt+K | X̂t−J+1, X̂t−J+2, . . . , X̂t)
(1.1)

In this project, the X̂ observation at every timestamp J will consists of n i-dimensional
vectors where n is the of sensors of the network and i is the number of variables they
measure and predicted sequence will consist of measurements X̃ of rainfall only for
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Chapter 1. Introduction

every timestamp K.
For simplification, we assume that all sensors collect the same type of data.
Current state-of-art methods for precipitation nowcasting involve spatio-temporal
series analysis of 2-D radar maps of the clouds [5]. It is achieved with the use of a
specialised version of recurrent neural networks (RNN) called long-short term mem-
ory networks (LSTM) for time-series generation combined with convolutions layers
responsible for extracting spatial features. Output of such models is a sequence of
2-D radar maps that are later fed into a physical equation mapping pixel intensities
into actual rain intensities.
Here, we take an alternative approach and build an end-to-end now-casting model
from weather station data directly to rainfall intensity. This is a novel approach
worth exploring as recent popularisation of remote sensing techniques like
weather stations provides us with ample data to experiment with and does not
require expensive cloud radars in contrast to previous studies. What is more,
we believe that research on spatio-temporal forecasting of non-grid data could
be applied in other domains. For this reason, we decided to follow existing state-
of-the-art techniques for predicting rainfall based on 2-D radar maps and apply the
same principles to data from a network of distributed sensors. This project makes
following contributions in that area:

• We provide a statistical analysis of temporal (in 3.2.3) and spatial (in 3.2.2)
distribution of rainfall across Singapore and describe how what implications it
has for developing a now-casting system

• In section 2.2.2 we theoretically explain empirical success of rainfall prediction
models based on 2-D radar maps convolution (ConvLSTM - [5]) and propose
a graph-convolution memory layer (6.5). We then apply it to the problem of
now-casting from sensors network data

• We also propose three other memory models and evaluate its performance
based on standard forecasting metrics. The best performing model is a Graph-
Concat network in section 6.4 and it achieves MSE value of 0.66
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Chapter 2

Background

In this section, we introduce necessary background knowledge for understanding
the project. Firstly, we discuss concept of a fully connected feed-forward neural net-
work: what is the basic concept of a layer, present detailed view of a single neuron
as well quickly recap simple activation functions. Secondly, we briefly introduce
convolution and pooling operations on a regular grid domain as it will ease the un-
derstanding of existing state of the art techniques which later motivate the graph
research. Further on, we discuss convolution properties from a geometric perspec-
tive and point out how they help to make convolution neural networks very effective
in capturing spatial relations. Finally, we look explore the concept of a recurrent
neural network (RNN) and long-short term memory network (LSTM). Those types
of models will form the main prediction frameworks used in the project.

2.1 Artificial neural network

Feed forward artificial neural network is a fundamental building block for many
deep learning models. It aims to learn the mapping Y = f(X,θ) given input-output
pairs X, Y by fine-tuning θ so it results in the best approximation of the original
function f . Neural network consists of number of consecutively applied functions
called layers. We usually have at least one input and output layer and some hidden
layers. An example of simple two layer neural network is shown in figure 2.1(a).
Now, left layer represents an input layer for X, in this case X ∈ R7 as we have
seven input nodes (neurons). For each neuron i in the left layer and each neuron j
in the right layer, there is a corresponding weighed connection wi,j - there is different
affine transformation layerW,b for each layer - so that

yj = g(
∑
i

(wi,jxi + bi)) (2.1)

where bi represents a bias and g is activation function introducing non-linearity in
the neural network. This is show in more detail in Figure 2.1(b)
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Chapter 2. Background 2.1. ARTIFICIAL NEURAL NETWORK

(a) fully-connencted network (b) Neuron model

Figure 2.1: Neural networks basics

(a) relu (b) sigmoid

(c) TanH

Figure 2.2: Activation functions
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2.1. ARTIFICIAL NEURAL NETWORK Chapter 2. Background

Popular activation functions are - they will all be used in the project:

• The rectified linear activation function g(z) = max(0, z)

• Logistic sigmoid function: g(z) = 1
1+e−z

• Tanh function: g(z) = ez−e−z
ez+e−z

Neural network is therefore an ordered collection of layers (consisting of neurons),
weights and biases for each of the connection, and activation function applied after
calculating weighed sum. It is important to note that in feed-forward network, there
are no feedback connections - meaning output of the network is not used as its input
again which will be the case in recurrent neural network. Before further discussion
of more advanced neural networks, we will explore how a neural network can learn
its parameters θ = W , b.

2.1.1 Neural network learning

After calculating output layer in 2.1(a) with values Y network =

y1
...
y5

, we conclude

forward propagation of the network. We use output values to calculate final loss
value L, using mean squared error function for n = 5:

L =
1

n

n∑
i

(Y data
i − Y network

i )2 (2.2)

The back-propagation algorithm [6] allows the information from the loss function
to then flow backwards through the network and compute gradients which allows
learning of the network’s parameters θ = W , b with another algorithm, for example
stochastic gradient descent [6]. Neural networks usually operate on batched data
- we do not complete froward pass with only an instance data, rather we do it for
multiple examples and then average back propagated gradients. There are more
parametes in the learning algorithm that can be fine-tuned depending on the nature
of the task - we discuss this in more detail in 5.4. After finishing learning (there are
many methods to evaluate when to stop), we are able to predict output on unseen
data Xunseen by performing single forward pass:

Y predicted = netθ(X
unseen) (2.3)

2.1.2 Over-fitting

As neural networks can fit approximate any given function arbitrary well, we usually
partition our data into train and test sets and train the model on the first set of data
and evaluate its performance on the latter one. It is often the case that training
results do not generalize well for unseen data. Over-fitting happens when neural
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Chapter 2. Background 2.2. CONVOLUTION NEURAL NETWORK

Figure 2.3: Convolution operation on 2-D image [7]

network works well on training data but achieve poor results for test data. It can be
overcome with obtaining a better-bigger data-set or some means of regularization
such as penalizing big weight values or dropping random neurons when learning.
This is also discussed in more detail in 5.4.

2.2 Convolution neural network

2.2.1 Intuitive understanding

Convolution

Convolution operation can be understood as a very efficient way of extracting fea-
tures from 2-D maps by calculating weighed sum of pixels with the use kernel ma-
trix. It leverages topological ordering of pixels, unlike affine transformations in feed-
forward networks, reuses same kernel for all image segments - meaning it is using
the same patch function across the whole domain, and is sparse as only some input
pixels contribute to given output pixel. Figure 2.3 shows application of kernel

K =

0 1 2
2 2 0
0 1 2


to the underlying input feature map.
We can see that output of the convolution operation (output feature map) is smaller
in size than input (input feature map) as the kernel matrix (patch operator) can
not average pixels that are outside of the border. Should the same size of output
be needed, padding on borders could be applied and in that case output feature
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2.2. CONVOLUTION NEURAL NETWORK Chapter 2. Background

Figure 2.4: 5x5 image reduced to 3x3 by averaging neighbouring pixels [7]

dimension can be calculated as: w = W −Wk + 2P + 1 where w is the output length,
W is input feature map length, Wk is the kernel length and P is length of padding.
Kernels work across the depth dimension, meaning that single kernel is used at each
channel, see 2.5 where input feature map has 3 channels - red, green, and blue,
and number of kernels corresponds to number of output feature maps which then
later can combined into final output and back-propagation algorithm can be used
for learning kernel values.

Pooling

Pooling operation is another important component of convolution neural networks.
It can be thought of as a down-sampling of a feature map in order to reduce its
size (thus calculation complexity) as well as provide some degree of equivariance
for local transformation. In essence, pooling is like applying another patch operator
on a feature map that summarizing local characterise of the input. Figure 2.4 shows
how an averaging kernel filter produces output feature map, other patch operators
(sum of pixel values, max of pixels values, learnable kernel) are possible and they
largely depend on the task at hand.

2.2.2 Why does convolution really work?

Having intuitively understood how two main ingredients of convolution neural net-
works work, we now describe geometric properties of regular grids (such as squares)
that make pooling and convolution so effective in extracting spatial information.
This section is largely based on [9].
We consider squared integrable function f ∈ [0, 1]2 and we analyze an unknown
function y : f −→ Y where Y has the dimensionality of the target space - in this
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Chapter 2. Background 2.2. CONVOLUTION NEURAL NETWORK

Figure 2.5: LeCun’s convolutional neural net [8]

case, it will be further parameterized by timestamp k and correspond to model’s
predictions. In most of image analysis tasks (such as [5] and [10]), we can put some
reasonable priors on the function y

Stationarity

Firstly, we assume that function y is equivariant to translations which can be defined
as an operator τ working on function square integrable f for x, v ∈ [0, 1]2:

τvf(x) = f(x− v)

Now for the equivariance property to hold, we must have

y(τvf(x)) = τv(y(f(x))) (2.4)

Above is well defined given that output space is such that translation is possible - for
example output is a picture.

Deformations

We also assume that the function y is equivariant with respect to local deformations
mathcalL defined as:

Lτf(x) = f(x− τ(x))

where τ is an operator from [0, 1]2 to [0, 1]2. We again assume equivariance such
that:

|y(Lτf)− Lτy(f)| ≈ ||δτ || (2.5)

where ||δτ || is the smoothness of τ meaning that our function y does not change
much when input image is slightly deformed.
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2.3. MEMORY NETWORKS Chapter 2. Background

Convolution neural networks (CNN)

Now, assuming that 2.4 and 2.5 holds true, we define 2-d convolutional neural net-
work to consist of multiple layers [11]: g = Cτ (f), acting on a p-dimensional input
f(x) = (f1(x), . . . , fp(x)) by applying a bank of filters τ = (τl,l′), l = 1, . . . , q, l′ =
1, . . . , p and point-wise non-linearity ξ functions such as in 2.2.

gl(x) = ξ

(
p∑

l′=1

(fl′ ? τl,l′)(x)

)
(2.6)

where convolution (f ? τ)(x) is defined as

(f ? τ)(x) =

∫
Ω

f(x− x′)τ(x′)δx′ (2.7)

Such a layer produces a q-dimensional output g(x) = (g1(x), . . . , gq(x)) which is re-
ferred to as feature maps. In 2.2.1 we pointed out learnable kernel parameters are
shared across width and height of the image. This corresponds to learning observed
function y defined in 2.2.2, which we assumed is translation equivariant. From 2.5,
we know that convulutions can be composed so that important spatial information
is captured at different scales. Thanks to that, we have a constant number of pa-
rameters per layer (kernel size) independent of the input size (unlike as in fully con-
nected nets) and hierarchical properties of convolutions allow to achieve sub-linear
total learning complexity. Therefore, we conclude that placing geometric priors on
imagines in [0, 1]2 makes patch convolution operators underpins their experimental
success. Figure 2.5 demonstrates whole working CNN in practice. Notion of stability
to local translations and applying same patch operator across the spatial domain will
prove critical to research in 6.

2.3 Memory networks

Deep neural networks with convolution layers were discovered for processing grid
structured data, but they are not suited (at least until recently) for dealing witih
temporal sequences. Recurrent neural networks (RNN), in contrast, were specially
designed for variable-length sequence processing. In this section, we give a short
introduction of the general class of memory networks (RNN) and then expand it to
long-short term memory networks (LSTM) which are better in handling long-term
dependencies encountered in nowcasting problem.

2.3.1 RNN

Let’s take a simplest temporal sequence analysis problem. We would like to extract
information of when it is gonna rain from two sentences: ”It will be raining today”
and ”Today, it is going to rain”. Should feed-forward neural network was to be
trained to solve this problem, separate parameters for each input feature (for exam-
ple, word embedding) in each place in the sentence of fixed length. That has proven
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Chapter 2. Background 2.3. MEMORY NETWORKS

Figure 2.6: Unfolding of recurrent neural network [6]

to result in bad results and training efficiency. Recurrent neural networks use pa-
rameter sharing across parts of the sequence (in our case, timestamps) and enable
future predictions based on varied-length input. This makes them particularly suit-
able for now-casting problem being considered. Such a formulation of the recurrent
network can be understood as a folded feed-forward network where st is state of the
system at time t. Evolution dynamics of that can be recurrently defined by [6]:

st = f(st−1,θ) (2.8)

which can be later unfolded. For t = 3, we have:

s3 = f(s2,θ) = = f(f(s1,θ),θ)

Recurrent equation 2.8 is often used to calculate hidden state ht for each timestamp
t in the network:

ht = f(ht−1,xt,θ) (2.9)

In this setting, ht represent a lossy summary of history and is used to make prediction
on the next output ot. Unfolding of recurrent neural network and calculating the loss
function on the next output o is shown in figure 2.6. It uses recurrent connection
between hidden state ht−1 and ht to provide the model with a prediction context.
RNN is a significant improvement on CNN and regular feed-forward network in case
of sequential problems, but the concept still suffers from problem of long-term de-
pendencies. Weights given to distant past are exponentially smaller than parameters
for short-term past and as such they make network learning very difficult. This has
been explored in [6] to a great detail. We now omit learning methods for recurrent
networks because they are not crucial for understanding this project and are dis-
cussed extensively in other sources. We also omit internal mathematics of recurrent
layers and move on to describe structure of more advanced LSTM unit which is able
to deal with long-term dependencies in an efficient way.

11



2.3. MEMORY NETWORKS Chapter 2. Background

2.3.2 LSTM unit cell

Figure 2.7: Standard LSTM unit - subscript notation (ct instead of ct) [12]

Long short term memory units form a crucial way of networks dealing with sequen-
tial future prediction. We adopt a formulation from [12] of the LSTM unit cell (figure
2.7) where it has cell state ct at time t. Memory access is controlled by input it, out-
put ot, and forget ft gates which all use sigm as activation function. All of the 3 gates
and input (left of the 2.7 receive, at time t, input xt and previous states summary
ht−1 and compute final output ht by following equations in 2.10. ◦ is Hadamard
product.

it = σ(Wxixt +Whiht−1 +Wci ◦ ct−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcf ◦ ct−1 + bf )

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wco ◦ ct + bo)

ht = ot ◦ tanh(ct)

(2.10)

Each weight matrix has indices explaining which part of the system it corresponds to,
for example: Whi is the hidden-input gate matrix, Wxo is the input-output gate matrix
etc. Above cell idea became a dominant design for LSTM allowing internal cell
state of the unit to trap the previous information making learning long-term features
easier. LSTM architectures are considered state-of-the-art approach for time-series
analysis and yield superior results when applied to nowcasting problem as their are
able to capture long-term dependenciess in dynamical weather system.
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2.3.3 Encoder-decoder and future predictions

Figure 2.8: Encode-decode structure of LSTM system [6]

We now move onto describing encoder-decoder structure made of multiple LSTMs
that allows mapping input sequence of length n to output forecast of length m. The
goal is to predict distribution P (y1, y2, · · · , yn|x1, x2, · · · , xm). This is reformulation
of 1.1 where y corresponds to future predictions.
In the simplest formulation, we have one LSTM layer that acts as encoder and one
LSTM layer in the decoder - see figure 2.8 (this can be extended to multiple stacked
layers) - see 5. We initially fed input sequence of x into the encoder network and
obtain a fixed length context summary C. This is a concatenation of the last hidden
state ht and the last cell state ct. We then use that vector as initial hidden state
for the decoder, which sequentially produces future predictions and uses them as an
input for following calculations.
There are many factors determining how well encoder-decoder model performs. One
of the most important is the dimensionality of hidden states (h, c). If they are much
larger than dimensionality of input x, we can expect that over-fitting will happen
as model will have enough parameters to mirror training-data so well that it will
probably not generalize for unseen sequences. In 2.8, we see that actual outputs
of the network yt are re-fed into decoder to generate following predictions. It has
been discovered that during training time, this can be improved by using actual
values (from target data) instead. So rather than inputting yt and predicting yt+1 we
would input ydatat and produce yt+1. This is called teacher forcing and has proved to
accelerate training of the network. It is worth to point out that teacher forcing can
be used only during training time as at evaluation time we do not now real targets.
More architectural choices in the encoder-decoder structures are discussed in 5.
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Chapter 3

Data domain and its challenges

Data being modeled in this project comes from environmental sensors spread across
Singapore. There are 55 sensors measuring rain intensities at 5 min intervals and 16
of those are co-located with more advanced devices that measure wind speed, wind
direction, relative humidity, and dry bulb temperature. Thee data collected comes
from a 1 and half year long period starting in December 2016. In this section, we
emphasise important characteristics of that data that will later motivate design of
machine learning algorithms.

3.1 Sensors and available data

All environmental sensors are shown in the figure 3.1. Most of them are located in
the centre of the island what will result in predictions for that region being more
accurate than for outer parts of the country. Red dots represent sensors measuring
all 5 environmental factors while yellow dots correspond to rainfall only devices.
Singapore position in the map is between 1.15◦ and 1.47◦ north in vertical direction
and ranges from 103.6◦ to 104.1◦ east in horizontal direction. Geo-coordinates of
sensors locations must be projected from 3-D earth surface onto 2-D flat surface of
a computer screen. This is important as it allows us to calculate accurate distances
(in horizontal and vertical directions) between points on the map. Map projection
is very common operation when dealing with geographical and many geo-spatial
libraries in Python can handle when provided with a coordinate reference system
describing describing how x, y points relate to real-world positions. Here we will
use 24500 projection from a spatial reference library [13] that projects from bounds
of

103.6200, 1.1200, 104.1600, 1.4600

to

4260.3246, 11468.9542, 64361.4025, 49065.6777

14



Chapter 3. Data domain and its challenges 3.1. SENSORS AND AVAILABLE DATA

Figure 3.1: Geographical distribution of environmental sensors across Singapore. [not
projected view, axis geo-coordinates of points]

Figure 3.2: Interpolated sums of rainfall during one year period projected onto flat
Cartesian coordinates
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Figure 3.2 shows how sum of yearly rainfall varies across Singapore with red-white
color map representing higher and lower intensities of rain. That figure also demon-
strates how x and y values of geo-points changed after the projection. Gradient
color on the map is an interpolated value based on method of ordinary Krigging [14]
which leverages spatial correlation between data points to produce best interpolated
estimating of points between sensors (points further away from ground truth sen-
sors have less certainty. It can be seen that yearly sum varies by around 20% despite
the island being only around 50km long in east-west direction and 20km long in the
north-south ax. This might suggests that rainfall events is very localised and there
might be low correlation of precipitation values between different sensors. That con-
clusion is important to this project as methods considered[5, 6] assume some degree
of correlation between different data stations. We explore spatial correspondence in
a greater detail in 3.2.2.

3.1.1 Missing data

Both datasets provide values for each environmental variable every 5 minutes. Times-
tamps’ values range from mid December of 2016 to February of 2018. There is a lot
missing data resulting from two main reasons: repeated bad gate-away calls to the
data server access points or sensors malfunctioning at some points of time. As iden-
tified in 3.2.3, rain intensity varies greatly on diurnal and annual basis implying that
the predictive model must take into the account time of the year and of the day.
For that reason, wee decided to find sensors for which there is more than 10% of
days missing from any given year and exclude those devices from our data-set. In
rain-only data-set, there are 5 sensors with records from only 100 days in 2018 and
in environmental data, we have 4 such sensors. Furthermore, models explored in
this project also require that for a given time-stamp, there is available data from all
sensors. Those two main limitations considerably decrease the size of data-sets for
which more detailed description is given in 7

3.2 Local characteristics

The whole field of nowcasting assumes that there is a short-term dependence be-
tween forecasted values and history of measurements and that events are correlated
in spatial domain for a limited radius distance. For that reason we provide, short sta-
tistical analysis of both spatial and temporal correlations between weather in Singa-
pore. This analysis is limited to rainfall only dataset but later extended to correlation
between different variables at a single sensor station for different time-lags.

3.2.1 Pearson Correlation

In following section we adopt Pearson correlation coefficient as means of evaluating
thee strength and direction of linear relationships between pairs of variables [15].
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That coefficient can be computed as:

ri,j =
Cov(i, j)√

Var(i)
√

Var(j)
(3.1)

where Cov(i, j) is the sample co-variance of i and j; Var(i) is the sample variance of
i; and Var(j) is the sample variance of y. Value of 1 means perfectly positive linear
relationship, −1 is perfectly negative while 0 means no correlation at all.

3.2.2 Spatial distribution

With an eye to use past sensors readings from all geo-locations to predict future
rainfall events in all sensor locations, we are investigating how correlated the lagged
values are based on their horizontal and vertical distance. We adopt similar approach
to [16] in which we compute pairwise correlation coefficient between stations on
different time lags. In such setting Cov(i, j) for timelag δt is defined as:

Cov(i, j) =
1

n− 1
Σn
t=1(xi(t)− x̄i)(xj(t+ δt)− x̄j) (3.2)

where n is number of commoon timesteps btween statiions i and j. We calculate that
for all rainfall sensors which results 51x50 coefficient for every time-lag (1-4) inves-
tigated. In order to see correspondences between stations, we calculate horizontal
and vertical distances between each station (limiting ourselves to 15km pairwise
distance) and plot average values of correlation coefficient between different time-
stamps. One time-lag considered here is 12 minutes as this is how we re-sampled
data to achieve better performance in 5 and 6. Figure 3.3 and 3.4 show that spatial
extent of rainfall events is quite limited as there the correlation coefficient is quite
small for most of distances and decreases even further with greater time-lag. What
is more, there is greater correlation in horizontal direction than the vertical one and
it can be explained by Singapore specific west-east winds in [16]. [16] also points
out that both spatial and temporal correlation varies from season to season but we
do not explore that variability any further because we are aiming to build a general
end to end model that is not tailored for any specific time period. We now move onto
investigating temporal variability of rainfall events in diurnal and yearly perspective.
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Figure 3.3: Spatial correlation of measurements

Figure 3.4: Spatial correlation of measurements lagged by one timestamp
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3.2.3 Temporal distribution

Upon discovering that spatial extent of rainy events is very small, we now aim to
explore how rainfall changes with time. [16] proved that Singaporean rain usu-
ally lasts less than an hour which will already pose quite a significant problem for
machine learning models as they will have to be able to predict different outcomes
(no-rain or rain events) from the history of rains (for example no rain in the past
hour). This will not be possible without taking leveraging spatial relations between
sensors, but also taken into account inter-seasonal variability of rain intensities. For
that reason we plot rainfall intensity as well as its frequency depending on the time
of the day and year. Figures 3.5 and 3.6 show that distribution for one randomly
sampled sensor from the centre of the island with time of the year plotted on hori-
zontal axis and hour of the day on vertical.

Figure 3.5
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Figure 3.6

It is apparent from those figures that rainfall in Singapore a is highly variable phe-
nomena and its behaviour changes depending on both hour of the day and time of
the year. An excellent discussion (with analysis done on a larger dataset) of that is
provided in [16], but for the case of machine learning models, it is clear that both
information have to be somehow incorporated into other model flow. This can be
done by simply adding that temporal information to other input variables, coming up
with a new normalisation technique that is dependent on the season and date-time.
We further analyse the consequences of that high variability in later sections.

3.2.4 Within sensor correlation

In this final data exploration section, we calculate correlation between different
lagged variables from environmental dataset within one station. This is very impor-
tant as based on findings from 3.2.2 and 3.2.3 we suspect that highly variable nature
of rainfall data and small values for spatial correlation will make rainfall forecasting
very challenging when the input data is only one dimensional time-series of rainfall
values. For that reason, we believe that environmental data with 4 additional vari-
ables can prove to result in better performance of the model. We plot Pearson’s coef-
ficient co-variance between different vartiables for 6 different time-lags and present
the result in figure 3.7. These are example values plotted only for station no. 116
but they are representative of other sensors. From that, we can see that rainfall in
lag 6 is positively correlated with all previous recorded rainfalls as well as air tem-
perature. It also highly negatively correlated with the previous temperature. Wind
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direction and wind speed seems to have no measurable statistical effect on the the
actual rainfall intensities (but they may affect how they change from one timestamp
to the next one). That confirms our suspicion that inclusion of more environmental
data will improve reliability of rainfall forecast.

Figure 3.7: Correlation between different environmental factors

3.3 Summary

We showed how highly variable rainfall data is. It exhibits different properties de-
pending on time of the year and day as well as that rain is usually short-lived event
with small spatial extent. We then described major challenges the nature of the
data will pose for machine learning models and pointed out that inclusion of more
environmental data might alieavaate this problem.
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Chapter 4

Evaluation plan

Main objective of the project is to create and end-to-end model being able to pre-
dict rainfall intensity over short-time period in a small area. Our approach is quite
different from existing ones as we will operate on low dimension time-series signal
coming from multiple sensors rather than a single 2-d map of clouds coming from
a radar. From that reason, the first objective of the project is to evaluate how suit-
able memory network really are for this type of rainfall nowcasting, identify problem
with training such models and point out advantages and disadvantages of the two
approaches. We are also interested in satisfying Singaporean estates requirements
described in 1. For that reason, we introduce a formal way of evaluating model’s
performance that combines both objectives.

4.1 Understanding performance of sensors network
nowcasting

As defined in 1.1 the forecaster model’s output will consist of a sequence of pre-
dictions for next n consecutive timestamps. In order to train the model, we will
be minimizing squared sum of differences between predicted rainfall amount and
actual reading from the sensor at corresponding timestamp. This can be expressed
as:

L(X̃t+1, . . . , X̃t+K) =
1

K
ΣK
k=0(Yk − X̃k)2 (4.1)

where X̃t+K are predicted values up to Kth timestamp and Yt+k are target values.
Such sum is then averaged over all samples in the batch. The best model will have
the smallest value of MSE loss function. Unfortunately, average squared sum of er-
rors is not a meaningful evaluation metric describing how well the model performs
in different settings. In the case of Singapore that invested in big tanks able to store
large amounts of water for local use, we know that main goal is to create a control
trigger for drainage if predicted sum of rainfall over next four hours will exceeded
maximum capacity of the tank. This is a reasonable evaluation goal because it re-
defines the sequence generation problem as a simple binary classification problem
which is easy to measure and directly corresponds to the real objective of the system.
However, evaluating model’s performance at only one time horizon (k = 4 hours)
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and at one rainfall threshold τ (volume of the tank) is not sufficient. First of all,
it does not allow to test tank’s optimal utilisation which requires only draining the
tank by however MUCH rainfall is predicted (plus overhead for uncertainty). This
would give the maximum usage of tank resources and provide maximum rainwater
for local usage. Secondly, the state-of-the-art nowcasting study [10] (uses 2-D radar
maps rather than single sensor points) also adapts more general evaluation frame-
work testing model’s performance at different rainfall threshold levels. With an eye
to evaluate difference between radar map and sensors network approach, we will
indeed evaluate our nowcasting algorithm as a multiple binary classification prob-
lem at different prediction windows k and at multiple rainfall thresholds τ . We now
move onto describing formal metrics used for describing effectiveness of the system

4.2 Quantifying success

4.2.1 Confusion matrix

We will consider thee event to take place if the actual rainfall amount exceeded given
threshold at a given timestamp. So we may be interested in detecting heavy rain-
storms - threshold for that will be 30mm/h of rain which translates to 6mm/12min
(out timestamp length). The model will output a forecast which will be later classi-
fied as a hit - when it correctly predicted the event (in our example, timestamp out-
put is greater than 6m/12min), incorrect forecast of occurrence, incorrect forecast of
non-occurrence or, finally correct forecasts of non-occurrence. For multiple outputs,
this information can be succinctly summarised in the contingency table which can
be seen below:

(
hits false alarms

misses correct negatives

)
=

(Positive Event Negative event

Positive forecast a b

Negative forecast c d

)

4.2.2 Metrics

Nowcasting is a still a fast developing emerging field with no established way of eval-
uating results, but we believe that in the case of that particular project, evaluation
methodology adopted by [5] and [10] is a sensible choice to make. We will eval-
uate model’s performance based on four different metrics: Probability of detection
(POD), false alarm radio (FAR), critical success ratio (CSI), and Heidke skill score
(Heidke). All of them can be computed directly from the confusion matrix and the
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formulas for them are given below:

POD =
a

a+ c

FAR =
b

a+ b

CSI =
a

a+ b+ c

Heidke =
2 ∗ (a ∗ d− c ∗ b)

(a+ c) ∗ (c+ d) + (a+ b) ∗ (b+ d)

(4.2)

It is worth noting that in traditional machine learning perspective, POD = Recall and
FAR = 1-Precision. We are interested maximizing all of the metrics but minimizing
false alarm ratio. We will evaluate those metric at 3 different timestamps k = 1, 5, 10
and use [10] thresholds for binary classification: τ = 0.5, 2, 5, 10, 30.
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Chapter 5

Machine learning for Nowcasting

Having established what data is available and what evaluation methodology we will
follow, we describe current state-of-the art model for nowcasting 2-D radar maps
and point to its most important features that could be applied to our problem of
nowcasting sensors network readings. We then implement those findings into two
rather simple encoder-decoder memory models and try to improve on basic results by
fine-tuning the model with the use Microsoft Neural Network Intelligence toolkit and
applying simple regularisation techniques. Finally, we identify non-leveraging spatial
information as model’s major shortcoming what motives introducing geometric deep
learning in the next section.

5.1 State of the art approach

5.1.1 ConvLSTM model

The existing state of the art for rainfall now-casting is largely based on work in [5],
where convolution LSTM (ConvLstm) was proposed. It uses the principle as in 2.10
of input, forget, update, and output gates controlling cell state on the conveyor belt
going through the whole cell. The update equations are introduced below:

it = σ(Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt +Whc ∗ Ht−1 + bc)

ot = σ(Wxo ∗ Xt +Who ∗ Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

(5.1)

Hidden states in 5.1 are 3-D tensors with width, height and channels as dimensions.
If we use n kernels W , then output of the layer will n dimensional features map of 2-
D tensors. This is represented in 5.1. Convolutions connections between inputs and
hidden state reduce number of parameters in comparison with a fully-connected
LSTM and by leveraging property of translation in-variance achieve better results
in spatial-temporal analysis. Now, [5] used multiple stacked ConvLSTM layers to
create a decoder similar to the one in 2.8. This time, instead of feeding the fixed size
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Figure 5.1: Convolutional connections inside of ConvLSTM [5]

context vector into each cell inside of unrolled decoder, we only use that vector C as
initial hidden state for the first cell. If multiple stacked layers are used for encoder-
decoder structure, we must make sure that there is the same number of memory
layers in both sub-nets as well as use Ci from ith encoder layer as initial state of ith
decoder layer. This reasoning is presented in more formal way in 5.2

X̃t+1, . . . , X̃t+K = arg maxXt+1,...,Xt+K p(Xt+1, . . . ,Xt+K | X̂t−J+1, X̂t−J+2, . . . , X̂t)
≈ arg maxXt+1,...,Xt+K p(Xt+1, . . . ,Xt+K | fencoding(X̂t−J+1, X̂t−J+2, . . . , X̂t))
≈ gforecasting(fencoding(X̂t−J+1, X̂t−J+2, . . . , X̂t))

(5.2)
where we try to maximzie the probability of predicted frames in the decoder given
encoder output which corresponds to simple function composition of two sub-nets.
Figure 5.2 shows the actual model from the paper where two stacked ConvLSTM
layers were used.

Figure 5.2: Encoder decoder structure for radar maps nowcasting [5]

5.1.2 Data splitting-strategy and training

[5] trained and evaluated his model on 97 rainiest days from the dataset and decided
to randomly select 4

6
of any given day for training and left out 1

6
for testing and

evaluating the model. As rainfall events in their data-set were also very short-lived,
they decided to use 5 timestamps measurements as input to the encoder and tried to
predict 15 future frames. What is more, they were interested in predicting whether
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it will be raining only over 0.5mm/h and therefore they could use a cross-entropy
loss function. This seems to be quite a limited approach for now-casting as pointed
out in subsequent work by [10] as in the world, we are often interested in more
fin-grained predictions. We now move onto explaining [10] formulation of a loss
function as it will be more suitable for our problem.

5.1.3 Balanced loss function

[10] improved ConvLSTM model and one of the major innovations in that work was
to use a different loss function for calculating the error on predicted frames. Their
first idea was to use a mean squared error function similar to 4.1 and calculate error
for each pixel in the frame and then average that over all pixels in the frame. How-
ever, data-set used in that study was much larger than in the original paper and had
a highly imbalanced distribution of precipitation with majority of data being no-rain
or very low-rain frames. Their work’s focus was on detecting heavy rainfall events
as their are more dangerous to people and harder to deal with. For that reason, they
introduced balanced mean squared error function (B-MSE) and balanced absolute
error (B-MAE) functions.
Specifically, they assigned a weight w(x) to each pixel according to its rainfall inten-
sity x:

w(x) =



1, x < 2

2, 2 ≤ x < 5

5, 5 ≤ x < 10

10, 10 ≤ x < 30

30, x ≥ 30

The resulting B-MSE and B-MAE scores were then computed as

B-MSE =
1

N

N∑
n=1

480∑
i=1

480∑
j=1

wn,i,j(xn,i,j − x̂n,i,j)2

B-MAE =
1

N

N∑
n=1

480∑
i=1

480∑
j=1

wn,i,j|xn,i,j − x̂n,i,j|

where N is the total number of frames and wn,i,j is the weight corresponding to the
(i, j)th pixel in the nth frame - each frame is 480 pixels high and wide.

5.2 Our data-set limitations

In section 3 we described structure and origin of the data. We said models explored
in this project require that for a given time-stamp, there is available data from all
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sensors. This is because for model in 6.4 and 5.3.4 length on input tensor must be
equal to 51 as it determines size of matrices inside of LSTM layer. We also want to
offer a fair comparison of models that differ only by the architecture not amount of
data. Furthermore, after initial experiments, we saw that 15 forecasted timestamps
(as [5] did) given 5 input measurements does not yield satisfying results and decided
to focus on predicting only 10 steps into the future. Finally as most of rain-data is
zero valued, we decided to resample 5 minutes measurements and sum them over
12 minutes intervals as well as restrict the dataset to times where there is a rainfall
event (defined as rainfall exceeding 0.5mm/h) at at least one of the sensors over
15 considered timestamps (5 for input, 10 for output). Thus, at the end we had
12471 data points (where each data point is a sequence of 15 measurements) and
put 70% of that in training set and leave out 15% for both validation and testing.
This is true for the data that includes rainfall measuremnets only so that all of our
input feature maps to the model are 1-D. Distribution of dataset obtained by the
procedure described above is shown in figure 5.3.

Figure 5.3

5.3 Simple memory models

As Singaporean sensors network presented in 3.1 do not have grid-like structure,
we are unable to put priors of translation and local deformation on our data and
therefore can not use standard convolution for extracting spatial information. For
this reason, we first propose a different way of including geo-relationships data in
the forecaster model and then present how two simple encoder-decoder structures
can be defined for the Singaporean data.
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5.3.1 Normalization

Before going into memory models we note that all our data in this project is nor-
malised using the following equation:

Xscaled =
X −Xmin

Xmax −Xmin

(5.3)

where Xmin and Xmax are minimal and maximal amount of rainfall in the training
set and Xscaled is normalized measurement.

5.3.2 Inclusion of auxiliary information

Liao [17] presents an extensive research on the inclusion of different types of auxil-
iary information in memory models. Main focus of his study is on predicting traffic
conditions from online route queries but it can be extended for nowcasting models
as well. In our model, one type of auxiliary information will be globally normalized
geo-coordinates of weather stations. They will x, y values after the projection and
we will call them auxx, auxy. Furthermore, as discussed in 3.2.3, we noticed that
rainfall in Singapore varies widely on yearly and diurnal basis. It fluctuates differ-
ently based on the time of the day but this is further determined by the season of
the year (whether it is a monsum season or not). Thus, we add two more pieces of
information to the model, namely:

auxyear =
day of the year

number of days in the year

auxday =
minute of the day

number of minutes in the day = 60 ∗ 24

Figure 5.4: Auxiliary info inclusion for encoder-decoder structure - idea based on [17]

Both models in this section will leverage same encoder-decoder structure which is
presented in figure 5.4 and use Relu activation function on the last layer as rainfall
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cannot really have negaative values. In this section, we focus on describing models
features and explaining some fundamental assumptions that they make on the data.
We discuss models performance in section 7, but it is worth noting that models in
this section under-perform in comparison with those introduced in chapter 6.

5.3.3 Single sensor LSTM

The simplest model tested in the course of the project assumed that there is no local
spatial correlation between sensors in the network. Instead, it is trained on single
sensor points only and the geo-coordinates of the sensor are included in the auxil-
iary information tensor which gets appended to the outputs of the decoder and gets
passed through the final fully-connected layer. As it is natural that rainfall intensity
can not be negative, final FC layer is activated by the RELU function. Having said
that, each Xi of encoder’s input is a one-dimensional tensor containing measure-
ments from a single sensor at a given time-stamp. Dimensional of a hidden state
H on each level of the architecture is fine-tuned in 5.4, but given low number of
dimensions in the input, we expect that the best value will not exceed 8.

5.3.4 Fully connected LSTM

This kind of model assumes equal local correspondence between each sensor in the
network. For this reason, each Xi in the encoder is a tensor of length 51 (number
of sensors in the network) and has a linear connection to all other 50 sensors in the
network. Hidden state dimensions are also determined by the procedure described
in 5.4. Global geo-coordinates and time auxilary information are included in the
model’s in the same manner as in 5.4.

5.4 Fine-tuning the model

As now-casting is largely undeveloped area of study [10], there is no obvious way of
choosing hyper parameters such as dimensionality of a hidden state, number of lay-
ers, or a choice of a loss function (between B-MSE and regular MSE). For this reason
we decided to use Neural Network Intelligence (NNI) [18] toll created by Microsoft
as part of auto-ml project. In later sections we briefly describe what regularisation
technique we used in order to achieve a better performance of the model.

5.4.1 Neural Network Intelligence (NNI)

Neural Network Intelligence (NNI) is an open-source toolkit created by Microsoft
for tuning machine learning systems parameters. It allows a developer to define a
hyper-parameter search space from which NNI tuner will sample values in a way
such that some a single pre-defined final metric is optimized - we talk about specific
tuner for this task later in 5.4.2. NNI has also a concept of an assessor that can
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interrupt any given trial before it finishes if the model performs badly on some pre-
defined intermediate metrics in comparison to previously trained models. We used
a validation loss as as an intermediate metric and the test loss as a final metric. We
run two separate training regimes - one with regular MSE loss and the other one
with Balanced MSE with same weights at the same thresholds as in [10]. We then
pick the best performing model from each regime and compare four metrics defined
in 4. The results for all models are presented in 7.
Figure 5.5 presents an architecture of the NNI tool. The whole package comes with
an interactive WebUI allowing to display hyper-parameters chosen by the tuner as
well as models performance measured by metrics. The whole training and fine-
tuning process run on GeForce GTX TITAN X kindly provided by the Department of
Computing at Imperial College.

Figure 5.5: NNI architecture

5.4.2 Tuner: Tree-structured Parzen Estimator (TPE)

The tuner used in this project is of the more basic ones and it is called Tree-structured
Parzen Estimator [19]. TPE sequentially construct models to approximate the per-
formance of hyper-parameters based on historical measurements, and then subse-
quently choose new hyper-parameters to test based on this model. The TPE approach
models P (x|y) and P (y) where x represents hyper-parameters and y the associated
metric (in this, case validation loss). P (x|y) is modeled by transforming the gen-
erative process of hyper-parameters, replacing the distributions of the configuration
prior with non-parametric densities [18]. This is further described in [19] and in
this project we use NNI’s default implementation of that algorithm as it has proven
to work much better than a random search, especially given limited computational
resources [18].

5.4.3 Improving validation and test sets performance

Universal theorem of approximation [20] states that a feed-forward network with a
single hidden layer containing a finite number of neurons can approximate contin-
uous functions on compact subsets of Rn, under mild assumptions on the activation
function. Our models (containing multiple layers) could therefore achieve 0 as a
value of loss function. However, we are interested in models performance on the
test set. This motivates introduction of a dropout in the recurrent layer. Dropout
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trains the ensemble consisting of all sub-networks that can be formed by removing
non-output units from an underlying base network [6]. This process is presented in
the figure 5.6. It prevents over-fitting because individual neurons become less co-
dependent on each other which curbs the individual power of each neuron leading to
best performance on the unseen data. It is also more efficient than training multiple
ensemble models as it does not require more computing power than training a single
model. In our setting, we introduce a drop-out between hidden states only 2.10 and
place a probability p that each neuron will not get activated (will be dropped) during
the training phase. In the test and validation stages, we do not dropout any neuron
as shown in the figure 5.7.

Figure 5.6: One base network (left) and all possible combinations of networks with
dropped neurons (right) [6].

We fine-tune values of drop-out (0.1 < p < 0.9 =) using NNI toolkit and present best
values for each model 7.
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(a) neural network with dropped versus the same
net with dropout applied

(b) Training vs testing of a layer with a dropout

Figure 5.7: Dropout basics [21]
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Chapter 6

Going beyond Euclidean data

Models introduced in 5 do not leverage at all (single sensor model) or leverage in a
very inefficient manner (fully connected model with 51 sensors). For that reason, in
this section we introduce the concept of geometric machine learning - meaning deep
learning on non-Euclidean domains. We will model sensors network as a connected
directed graph with node sensors as vertices and introduce convolution and pooling
operators in such domain. We begin this section by explaining related graph theory
and then move onto translating 2.2.1 to the graphs domain and introducing Gaussian
Mixture Model [9] convolution and TopKPooling operators [22]. We conclude by
showcasing two models leveraging local spatial information of sensors network in
Singapore.

6.1 Graphs

We are interested in analyzing signals defined on directed, connected, weighted
graph G = (V,E,W ), which consists of a set of vertices V with |V | = n, a set of
edges E, and a weighted adjacency matrix W. If there is an edge e = (i, j) connecting
vertices from i to j, the entry Wi,j represents the weight of the edge; otherwise,
Wi,j = 0 [23] . We also need to define the functions on nodes and vertices of the
graph. Let f : V −→ Rn and F : E −→ Rn real functions where ith component
represents functions values at each vertex and edge respectiely. [11].

6.1.1 Generalisation of convolution properties for graphs

There exists two main aproaches for defining convolution operations on graphs:

• Spectral methods on Euclidean domains interpret convolutions as linear op-
erators that commute with the Laplacian operator. Therefore, in the graphs
domain, spectral convolutions focus on linear operators that commute with
the graph Laplacian. This property, in turn, implies operating on the spectrum
of the graph weights, given by the eigenvectors of the graph Laplacian [11].
However, that class of methods iis able to capture local positional relations as
well as unable to adapt to a changing domain [23]. These are severe limita-
tions from our perspective as intend to extract local geo-spatial information
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from the sensors network. Moreover, if any of the sensors becomes unavailable
at any points in time, the model would be able to adjust for that as it operated
on fixed domain. For this reason, we will not analyze spectral methods in this
project and instead focus on spatial definition of convolution.

• Spatial methods, in contrast, leverage geometric prior of translation invariance
and parameter sharing across the whole Euclidean domain and therefore can
be thought of as passing a template at each point of the domain and recording
the correlation of the template with the function at that point [11]. This boils
down to extracting an image patch, convoluting it with the kernel filter and
moving onto the next window of the picture. Irregular domain of graphs and
typical lack of a global coordinate system require us to represent the patch
extraction in some local intrinsic system of coordinates. We define that system
as d-dimensional pseudo-coordinates u(i, j) ∈ Rd for each vertex i and j. If
there exists an edge between two vertices its value u(i, j) is represented by an
edge attribute - this can be simple Cartesian distance between vertices, some
form of polar coordinates or vertex degree. If there is no edge between given
vertices u(i, j) = 0. Now, that local pseudo-coordinate system is used to define
a set of weighting functions v1(u), . . . , vj(u) localized to positions near x [11].
We thus define discrete graph convolution of signal f with kernel g to be:

(f ? g)(x) =
∑
j

gjDj(x)f, (6.1)

whereDj is a patch operator specified by previously mentioned weighting func-
tions v(u):

Dj(x)f =

∫
X
f(x′)vj(x, x

′)δx′, j = 1, . . . , J, (6.2)

Such formation shares two important characteristic with convolution 2.2.1 on Eu-
clidean domains. It has constant number of parameters equal to the number of
weighting functions and is localized by construction [11]. In simpler terms it can be
thought of as a simple non-linear neighbourhood information aggregation which is
presented in the figure 6.1. Simple kernel convolution on 1-D graph signal with a
single kernel is shown in 6.2. In general, all spatial graph convolution frameworks
amount to differnet choice of kernel functions. In this project, we consider the most
general one called Gaussina Mixture Model (MoNet) which is discussed in the sub-
sequent section.
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6.2. MONET CONVOLUTION Chapter 6. Going beyond Euclidean data

Figure 6.1: Graph convolution operation as neighbouring information aggregation [24]

Figure 6.2: Graph convolution operation as neighbouring information aggregation [24]

6.2 MoNet Convolution

Most of graph convolution frameworks propose using a fixed kernel specifically tai-
lored to the underlying application. Monti [9] came up with a different approach
where not only kernels gi are learn-able but so is the set of weighting functions v so
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that:

vj(u) = exp
(
−1

2
(u− µj)>Σ−1

j (u− µj)
)

(6.3)

where covariance matrices Σ1, . . . ,ΣJ and mean vectors µ1, . . . ,µJ are learned. As
this choice allow interpreting convolution as a mixture of Gaussians, this aproach is
called Gaussian Mixture Modell (MoNet). In this project, we adopt [25] choice of
local pseudo-coordinates and define them to be:

di,j = e
− 1

2 ||xi−xj ||
2

σ2 (6.4)

ui,j =
edi,j

Σkedi,k
(6.5)

where xi and xj are geo-coordinates of vertices (sensors) and σ is a learnable scalar
parameter controlling the locality of the kernel and how fast the information is
spread across distant vertices.

6.2.1 Top-k Pooling

Although none of Euclidean models in 5 has relied upon pooling operation (even
though some approaches such as [10] have leveraged that technique), the network
introduced in 6.4 relies on graph pooling in order to reduce number of parameters.
Thus, we introduce top-k pooling operation [22] which reduces the number of nodes
n in the input so that the output graph has kN vertices where k ∈ (0, 1].
A learneable projection score vector p determines which nodes are dropped so that
the operation for input signal on vertices X with an adjacency matrix A results in
the output nodes X′ and transformed adjacency matrix A′:

y =
Xp

‖p‖
i = top-k(y, k) X′ = (X� tanh(y))i A′ = Ai,i (6.6)

where top-k selects the top-k indices from a given input vector and � is Hadamard
product, and ·i is an indexing operation which takes slices at indices specified by i.

6.3 Sensors network graph

51 rain sensors spread across Singapore are nodes in the graph and initially there
exists a connection between each node so there are 51× 50 = 2550 edges. However,
we know that rainfall spatial relations 3.2.2 have a limited radius and therefore
we use K-NN [CITE KNN] to select only k closest sensors for each node. k is a
hyperparameter fine-tuned with the use of NNI toolkit. For connected nodes, we
calculate an edge attribute as shown in 6.6 and measured rainfall amount at each
timestamp repsents signal function at each vertex.
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6.4 GraphConcat

First model leveraging graph convolution is largely based on the work of [17] that
used graph CNN (spectral methods) to embed traffic of neighbouring road segments.
We follow similar formulation but instead rely upon MoNet convolution layer as well
as Top-k Pooling layer. Input to the encoder is a concatenation of two tensors:

• Same tensor as in 5.3.4 consisting of rain measuremets from all 51 sensors at
a given timestamp

• Tensor resulting from passing the graph construction from 6.3 through a single
Gaausina Mixture Model layer and a Top-k Pooling layer with k = 0.5

This momodel is show in Figue 6.3. We still include auxiliary info of global geo-
coordinates and time on the final filly connected layer. The activation on that layer
is Relu (same as in 5).

Figure 6.3: GraphConcat model

6.5 UmbrellaNet

Having seen that convolution based models outperform fully-connected memory net-
works on 2-D radar maps, it is natural to try to define a convolution memory model
operating directly on graphs. We take the same approach as [5] and introduce graph
convolutional connections in the state-to-state and input-to-state transitions so that
all inputs X1 . . . Xt, cell outputs C1 . . . Ct and hidden states H1 . . . Ht are values of
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Figure 6.4: MoConvLSTM model model

graph vertices with the equal number of nodes and same pseudo-coordinates u(i, j)
for all vertices i, j n the graph. Key equations of MoConvLstmLayer are shown below:

it = σ(GMMxi ∗ Xt +GMMhi ∗ Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ(GMMxf ∗ Xt +GMMhf ∗ Ht−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(GMMxc ∗ Xt +GMMhc ∗ Ht−1 + bc)

ot = σ(GMMxo ∗ Xt +GMMho ∗ Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

(6.7)

where GMMij represents corresponding Gaussian Mixture Model convolution. Fig-
ure 6.4 shows graph convolutional connections between hidden states and inputs.
One dimensional signal on each vertex (input feature maps) produces 3 output fea-
tures maps in hidden states and cell outputs. This formulation corresponds to multi-
channel CNN on Euclidian Domain. Now, UmbrellaNet is an encoder-decoder mem-
ory model as the one defined in 5.4. However, as the main focus of this project is on
proposing a new graph convolutional LSTM, it does not include a dropout between
hidden states as well as no auxiliary information and its final activation function is
Relu. Number of kernels used for GMM convolution as well as number of layer is
determined by hyper-parameter fine-tuning with NNI.
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Chapter 7

Evaluation

In this section, we evaluate project’s objectives, namely creating an end-to-end now-
casting model predicting future precipitation in the area of Singapore. We begin
by pointing out that there is a lot of missing data in the environmental dataset and
emphaise importantce of this for developing well performing graph model. Then, we
move onto a quantitative analysis of 4 developed models performance and contrast
that with state-of-the art approach based on 2-D radar maps. Finally, we speculate
why UmbrellaNet and MoConvLSTM layer under-perform, even though we expected
it to achieve best results. We conclude by pointing out future directions of work for
sensors now-casting models as well as graph convolutional memory models.

7.0.1 Aside on environmental dataset problem

In section 3.2.4, we saw that other environmental factors such as temperature or
humidity are very likely to impact future rainfall. Unfortunately, after applying the
data splitting strategy as describe above, the environmental data-set has only 343
data-points and 13 sensors which is not enough for our machine learning models
to properly train and evaluate results. This constitutes a major disadvantage of this
approach as we were not able to achieve state-of-the art results for rain only data
but predicted that inclusion of more environmental data would lead to significant
improvements due to high correlations values.

7.1 Quantitative comparison

Here, we first provide a list of hyper-parameters fine-tuned by NNI for each model
considered. Then, we show evaluation metrics (only for timestamp k = 10) for best
configuration of each model and explore final network in in more detail. We have
used 50 epochs for training if batch size was bigger than 8 and 25 if it was smaller. It
is worth noting that we tested models with two different loss functions (regular MSE
and B-MSE with same weights [10] ) and a vanilla mean squared erroor function
outperform B-MSE for each model. One of the reasons it could have happened is
that weights were themselves non-learnable and just the values were copied from
the other paper that used a different dataset.
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7.1.1 Models introduces in this project

We begin by introducing a hyper-parameter search space used for fine-tuning models
by NNI and showing best configuration and reporting the value of final loss evaluated
on the test set.

• Single sensor network defined in 5.3.3:

1. encoder and decoder dropout values between hidden connection in LSTM
controlling power of regularisation for better performance on the valida-
tion and test sets: dropout ∈ {0, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9}

2. number of layers in encoder and decoder controlling complexity and ex-
pressiveness of the memory layer no ∈ {2, 3, 4, 5, 6, 7}

3. hidden dimensions controlling complexity and expressiveness of the mem-
ory layer hdim ∈ {1, 2, 4, 8, 16, 32}

4. batch batch controlling GPU utilisation and sensitiveness for local mini-
mas of the loss function batch ∈ {4, 16, 32, 64, 128, 256, 512}

5. learning rate controlling speed of learning and sensitiveness for local min-
imas of the loss function lr ∈ {0.01, 0.001, 0.0001, 0.00001}

Best configuration is dropoutencoder = 0.4, dropoutdecoder = 0.7, no = 4, hdim =
32, batch = 32, lr = 0.0001. Final values of MSE was 3.66.

• Fully Connected model defined in 5.3.4

1. encoder and decoder dropout values: dropout ∈ {0, 0.3, 0.5, 0.6, 0.7, 0.9}
2. number of layers in encoder and decoder: no ∈ {2, 3, 4, 5, 6, 7}
3. hidden dimensions controlling complexity and expressiveness of the mem-

ory layer hdim ∈ {16, 32, 64, 128, 256, 512}
4. batch batch controlling GPU utilisation and sensitiveness for local mini-

mas of the loss function batch ∈ {2, 4, 16, 64, 256, 512, 1024}
5. learning rate: lr ∈ {0.01, 0.001, 0.0001, }

Best configuration is dropoutencoder = 0.9, dropoutdecoder = 0, no = 5, hdim = 32,
batch = 32, lr = 0.001. Final values of MSE was 1.14.

• GraphConcat defined in 6.4 same parameter space as for Fully-connected model
plus number of neighbours used to determine extent of a single GMM convo-
lution in graph layer: kneighbours ∈ {3, 6, 10, 20, 40}
Best configuration is dropoutencoder = 0.5, dropoutdecoder = 0.3, no = 4, hdim =
64, batch = 1028, lr = 0.01, kneighbours = 10,. Final values of MSE was 0.66.

• UmbrellaNet defined in 6.5 same parameter space as for GraphConcat but with
no dropout. Best configuration is no = 3, batch = 4, lr = 0.01, kneighbours = 6,.
Final values of MSE was 1.04. The best performing model is GraphConcat
network. We will now discuss its training regime and then move onto a com-
parative analysis.
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7.1.2 Training GraphConcat

Figures 7.1 and 7.2 present loss functions on training and validation datasets. Train-
ing loss has a smaller final value, but it is more volatile for fluctuation over 50
epochs. This is somehow surprising as we would expect a much smoother mono-
tonically decreasing curve. One explanation for that is that size of training set is 5
times larger and the during sampling from it we shuffle the data (as it is a standard
procedure for neural network training) and for the validation set we do not shuffle
the data. Another explanation for that phenomena is different dropout behaviour
during training and testing phases. This is a thing that needs further research as it is
bit unusual and could impact the final results. On the other hand, we had expected
that the final validation loss be bigger than the training one. This is very expected
as evaluation happens on unseen data.

Figure 7.1: Train loss values vs number of epochs

Figure 7.2: Validation loss values vs number of epochs

7.1.3 Comparative analysis

Here we compare our probability of detection and false alarm ratio metrics with [5]
and [10] use results to assess GraphConcat skills for Heidki and CSI. As discussed in
the evaluation methodology section, we calculate all metrics for 5 threshold values
τ and at 3 time-horizons k. This is a good compromise between computational costs
of calculation those metrics (CPU involved) and informative results. ↑ means that
higher values of metric is better while ↓ the opposite. Both [5] and use [10] are
interested in 4 hour horizon. Our model is evaluated only up to 2 hour horizon
(15 timestamps of 12 minutes). Our models perform very poorly when trained with
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error function optimizing for 4 hour long prediction window. This makes the direct
comparative analysis impossible but is enough to observe that our models under-
perform in comparison to 2-D convolutional models. Probability of detection should
be interpreted as the capability of the the system to detect τ rainfall amount at a
given time horizon k and is a measure of discrimination. Similarly, false alarm ratio
measures reliability and is the number of false alarms divided by the total number
of events forecast. They are both inequitable measures [26] meaning they do not
account for chance occurrence of forecast (when there is a class in-balance, our
random guess might have a good value of the metric) and are therefore imperfect
scores. Nevertheless they allow us to evaluate our models comparatively to [5].
Figure 7.1 and 7.2 show our results evaluated at multiple time horizons= k ∗ 12min.
[5] used a single time horizon of 240min which is double of longest one at a single
threshold of 0.5mm/h and achieved 0.66 and 0.2 for POD and FAR respectively.
This is much better than the our models scores (0.54 and 0.68) at the same threshold
at the time horizon of 120min. High value of false alarm ratio means that we are
often predicting rain over the threshold of 0.5mm/h when it is not there but a small
value POD suggest we are also not very good at detecting. That is the first sign of
disadvantage of the GraphConcat.

Table 7.1: POD ↑

τ/k 1 5 10
0.5 0.81 0.67 0.54
2 0.58 0.41 0.29
5 0.60 0.44 0.32
10 0.64 0.49 0.34
30 0.74 0.58 0.38

Table 7.2: FAR ↓

τ/k 1 5 10
0.5 0.51 0.58 0.68
2 0.27 0.29 0.38
5 0.15 0.16 0.24
10 0.08 0.09 0.10
30 0.05 0.06 0.09

Figure 7.3: Results of [5]
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We now evaluate our models on chance corrected metrics [26] of CSI and Heidki and
compare our performance to [10]. Note that CSI is still not truly equitable measure
because it has the disadvantage that equally unskillful forecasting systems, e.g. those
that always predict occurrence and those that always predict non-occurrence yield
a different score. Heidki score, in contrast is equitable, and therefore should be a
primary source of comparison between different nowcasting methods.
In tables 7.3 and 7.4 we see evaluation metrics given our models and Figure 7.4
presents state-of-the-art results from [10]. The first trend worth noticing is that
our models perform better at higher threshold than at lower ones. For example
CSI at τ = 30 for k = 10 is 0.37 while for τ = 0.5 it is just 0.22. This in a direct
compare to [10] and holds true for Heidke skill alike. One possible explanation
for that is we built and to end-to-end directly predicting rainfall values whereas ??
used a mathematical expression to transform predicted pixel values of radar maps
to actual rain. Their expression might not be as robust at higher threshold. Another
possible reason is that our dataset distribution is different from theirs and has more
higher intensity’s values. In general, our model behave considerably worse at lower
threshold (we analyze results for k = 10) τ but is better than radar approach for
higher ones. It is important to remember that we compare four hour forecast window
from the research paper with out 2 hour long prediction so we cannot directly say
that our model is actually better. However, it gives an indication, that sensor network
based nowcasting exhibits different characteristics from the radar map based.

Table 7.3: CSI ↑

τ/k 1 5 10
0.5 0.45 0.3 0.22
2 0.48 0.35 0.26
5 0.54 0.41 0.29
10 0.61 0.47 0.33
30 0.72 0.51 0.37

Table 7.4: Heidke ↑

τ/k 1 5 10
0.5 0.51 0.47 0.26
2 0.62 0.49 0.38
5 0.69 0.64 0.44
10 0.79 0.63 0.49
30 0.83 0.68 0.54

7.1.4 Discussion

Radar map approaches consistently outperform our approach. We believe that the
major reason behind this is not having enough information about weather charac-
teristics at a given sensor location. Having only 1 hour of precipitation history is
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Figure 7.4: Results of [10]

(a) CSI at 0.5mm/h

(b) CSI at 5mm/h

(c) CSI at 30mm/h

Figure 7.5: CSI during training

not enough to predict future rainfall in 2 or 4 hour window. Section 3.2.4, however,
strongly suggested that inclusion of more environmental data such as humidity or
temperature could increase the performance of rainfall nowcasting models.
What is more, we had believed that UmbrellaNet (Section 6.5) would be the best of
all models as it is strongly modelled on existing state-of-the art techniques. One of
possible explanations for that is one-dimensional signal (as most graph convolutions
work on multi dimensional data) at graph vertices, not enough of nodes in the graph,
or wrong choice of parameters (this would surprising as fine-tuned the network with
NNI). Figure 7.7 show the variation training and validation losses over 50 epochs of
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(a) HEIDKE at 0.5mm/h

(b) HEIDKE at 5mm/h

(c) HEIDKE at 30mm/h

Figure 7.6: Heidke during training

training UmbrellaNet and should be noted that that high volatility of the training
loss and non-improving of the validation is another symptom of problems with the
MoConvLSTM layer and UmbrellaNet.

7.2 Qualitative analyis

7.2.1 Future work

Further research into now-casting models based on sensors network is needed be-
cause the ever increasing adoption of remote sensing techniques will provide re-
searches with a more granular spatial data about environmental factors which lead
to better predictions at smaller radius of forecast. This, in turn, applies that we will
be able to forecast rainfall with a greater spatial precision enabling a whole wave of
new sustainability focused applications (such as managing tanks of water in Singa-
pore). The focus of further research should lie in exploring spatial convolution on
graph strutted data and applying that to memory models. This enables to leverage
spatial local patters in weather as well as not rely on constant domain assumption
(in contrast to spectral methods) which will increase the utility of models as larger
number of sensors will likely cause that some of that are unavailable at any times.
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(a) Training loss for UmbrellaNet

(b) Validation loss for UmbrellaNet

Figure 7.7: UmbrellaNet mean squared error functions

7.3 Conclusion

To the best of our knowledge, our project is a first attempt of creating an to end-
to-end nowcasting models for rainfall prediction. We have demonstrated that one
dimensional rain data is not sufficient for achieving satisfying results but provided
strong evidence that inclusion of more features could be very beneficial. We also
designed first spatial convolutional memory layer that is able to capture spatial re-
lations between nodes signals changing over time but failed to properly train it.
Instead, the best performing model for nowcasting we managed to train is Graph-
Concat and it achieves MSE value of 0.66 for 2 hour long prediction window.
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